Package: PanelCount 2.0.1
PanelCount: Random Effects and/or Sample Selection Models for Panel Count Data
A high performance package implementing random effects and/or sample selection models for panel count data. The details of the models are discussed in Peng and Van den Bulte (2023) <doi:10.2139/ssrn.2702053>.
Authors:
PanelCount_2.0.1.tar.gz
PanelCount_2.0.1.zip(r-4.5)PanelCount_2.0.1.zip(r-4.4)PanelCount_2.0.1.zip(r-4.3)
PanelCount_2.0.1.tgz(r-4.5-x86_64)PanelCount_2.0.1.tgz(r-4.5-arm64)PanelCount_2.0.1.tgz(r-4.4-x86_64)PanelCount_2.0.1.tgz(r-4.4-arm64)PanelCount_2.0.1.tgz(r-4.3-x86_64)
PanelCount_2.0.1.tar.gz(r-4.5-noble)PanelCount_2.0.1.tar.gz(r-4.4-noble)
PanelCount_2.0.1.tgz(r-4.4-emscripten)PanelCount_2.0.1.tgz(r-4.3-emscripten)
PanelCount.pdf |PanelCount.html✨
PanelCount/json (API)
# Install 'PanelCount' in R: |
install.packages('PanelCount', repos = c('https://jnpeng.r-universe.dev', 'https://cloud.r-project.org')) |
- sim - Simulated dataset with self-selection at both individual and individual-time level
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:801fa42a6c. Checks:10 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 27 2025 |
R-4.5-win-x86_64 | OK | Jan 27 2025 |
R-4.5-mac-x86_64 | OK | Jan 27 2025 |
R-4.5-mac-aarch64 | OK | Jan 27 2025 |
R-4.5-linux-x86_64 | OK | Jan 27 2025 |
R-4.4-win-x86_64 | OK | Jan 27 2025 |
R-4.4-mac-x86_64 | OK | Jan 27 2025 |
R-4.4-mac-aarch64 | OK | Jan 27 2025 |
R-4.3-win-x86_64 | OK | Jan 27 2025 |
R-4.3-mac-x86_64 | OK | Jan 27 2025 |
Exports:PLN_REPoissonREpredict_ProbitRE_PLNREpredict_ProbitRE_PoissonREProbitREProbitRE_PLNREProbitRE_PoissonRE
Dependencies:MASSRcppRcppArmadillostatmod
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Panel Count Models with Random Effects and/or Sample Selection | PanelCount |
A Poisson Lognormal Model with Random Effects | PLN_RE |
A Poisson Model with Random Effects | PoissonRE |
Predictions of ProbitRE_PLNRE model on new sample | predict_ProbitRE_PLNRE |
Predictions of ProbitRE_PoissonRE model on new sample | predict_ProbitRE_PoissonRE |
A Probit Model with Random Effects | ProbitRE |
Poisson Lognormal Model with Random Effects and Sample Selection | ProbitRE_PLNRE |
Poisson RE model with Sample Selection | ProbitRE_PoissonRE |
Simulated dataset with self-selection at both individual and individual-time level | sim |